TODAY'S ASSIGNMENT: 14.5 \#6,8,10-12,14 and 14.3 \#21-27, 30

14.3 use probability notation to show what you are solving for, then write the calculator command, and solve with calculator (similar to warm up)

$$
P(\text { at most } 4)=\text { binome df }\left(10, \frac{1}{5}, 4\right) \approx\left[\begin{array}{l}
967 \\
\hline 0.967 \%
\end{array}\right.
$$

14.5 solve with calculator, okay to write only the answer as long as it is labeled properly mean $=34.75$
median $=36$ etc...

NOTES 14.5

Measures of Central Tendency:

- arithmetic mean (average) \bar{X}
- median (middle value) Med
- mode (most common value)

Skills 14.5 \# 6,8,10-12,14

5-10 Mean and Median A data set is given.
(a) Find the median of the data.

Use calculator to solve, label answers.

(b) Find the average of the data. How many data points are greater than the average?

Enter data into a list using a calculator such as TI84. See
 helpful hint sheet to get started. (You may check out a calculator from Mrs. Rosenow.)

Calculator hints regarding data input:

to clear each list \rightarrow if you are editing a list, just arrow up and highlight L_{1}, then push clear and <enter>
to clear ALL lists at once $\rightarrow 2^{\text {nd }}$ Mem (above the + sign), then ClrAllLists
get started by entering data into a list \rightarrow push STAT button, then choose option 1:Edit (push $2^{\text {nd }}$ QUIT to close window when finished)
to sort each list \rightarrow push STAT button, then choose option 2:Sort A $\left(\mathbf{L}_{\mathbf{1}}\right)$ and fill in the appropriate name of the data list. Note: look above the number 1 key and choose L_{1}. Push <enter> and the calculator will say "Done." push STAT button, then choose option 1:Edit to view the list in order.

OOPS, a list got deleted completely !!
to rename/reset all lists \rightarrow push STAT button, then choose option 5:SetUpEditor, then push <enter>
to calculate mean, median, STANDARD DEVIATION, etc \rightarrow push STAT \square CALC to calculate statistics for your data by choosing option 1: 1-Var Stats L_{1}.
Important: be sure to fill in the appropriate list name, otherwise L_{1} will be chosen by default each time. Use down arrow to view $A L L$ data in both screens.

NOTE: if using frequency table, enter 1: 1-Var Stats $\mathrm{L}_{1}, \mathrm{~L}_{2}$

Enter data into a list. See helpful hint sheet to get started.

option 1: 1-Var Stats

$\overline{\mathbf{X}}=$ mean (average)
$\Sigma \mathrm{x}=$ sum of all data values
$\Sigma \mathrm{x}^{2}=$ sum of the squared data values
$S \mathrm{x}=$ sample standard deviation
$\sigma \mathbf{x}=$ population standard deviation
$\mathrm{n}=$ total number of data values
$\min \mathrm{X}=$ smallest data value
$\mathrm{Q}_{1}=$ first quartile
Med= median of overall data set (2 $2^{\text {nd }}$ Quartile) $\mathrm{Q}_{3}=$ third quartile
$\max \mathrm{X}=$ largest data value

Previous notes 14.3

Making connections:

total \# of trials
probability of
desired outcome
$)^{r}$

14.3 Notes: Useful Calculator Commands

binompdf = binomial probability distribution function
binomcdf $=$ binomial cumulative distribution function

On today's handout: go to distr by pushing $2^{\text {nd }}$ VARS
push the up arrow $\boldsymbol{\Delta}$ to find binompdf and binomcdf
OR \rightarrow enter A for binompdf
\rightarrow enter B for binomcdf

Notes on given handout:

binompdf(\#\#trials, probability of desired event, \# of occurrences) n

P finds ONE value

KEEP THIS PAPER in a Safe place FOR FUTURE REFERENCE!!!!!!

Calculator hints:

Go to DISTR by pushing 2nd VARS
Push the up arrow \triangle to find
binompdf and binomedf
OR...enter A for binompdf enter B for binomcdf
\rightarrow PROBABILITY function finds one value binomPdf:
(\#trials, prob of desired event, \# of occurrences)
n
r
\rightarrow CUMULATIVE finds several values and adds from zero up to maximum value.

binomCdf:

(\# trials, prob of desired event, max\# of occurrences)

Note: the comma button is above the 7 button.

check EVEN answers ior 14.3 \#21-27,30

Use probability notation to show what you are solving for, then write the calculator command, and solve with calculator.

3.317×10^{-10}	3.403×10^{-10}		
.0000128	.20972	.28347	.3439
.44165	.85197	.99963	

Notes on given handout:

binomadif(\#trials, prob of desired event,maximumm \# of occulrrencess)

C is cumulative...it finds several values and adds them all together
(NOTE: calculator always adds from zero up to the maximum value that you have specified)

Notes \rightarrow Terminology to watch for when using various commands:
"exactly" \rightarrow binompdf

"at most" or "no more than" \rightarrow binomcdf
"at least" $\rightarrow 1$ - binomcdf
(\# trials, prob, occurences - 1)

3-14 ■ Binomial Trials Five independent trials of a binomial experiment with probability of success $p=0.7$ are performed. Find the probability of each event.
3. Exactly two successes

binompdf $(5,0.7,2)$

Now solve it this way instead!

P finds one value

3-14 ■ Binomial Trials Five independent trials of a binomial experiment with probability of success $p=0.7$ are performed. Find the probability of each event.
11. At most one failure

$$
P(0 \text { failures })+P\left(1 f_{\text {firfure }}\right)=
$$

binomcdf (5, $0.3,1$ max

way instead! $\quad \mathbf{C}$ finds multiple values
up to the maximum
$P(0)+P(1)$

3-14 ■ Binomial Trials Five independent trials of a binomial experiment with probability of success $p=0.7$ are performed. Find the probability of each event.
9. At least four successes $={ }_{5}\left(4(.7)^{4}(.3)^{1}+C_{5}(.7)^{5}(.3)^{0}\right.$

From yesterday:

1 - binomcdf (5, 0.7, 3)

Now solve it this way instead!

C finds multiple values

Warm-up: put at top of today's assignment The chances of guessing the correct answer on a multiple choice test is $1 / 5$. If there are 10 questions, find each of the following:
A. P (getting 4 questions correct)

B. P(getting at most 4 questions correct)
C. \mathbf{P} (getting at least 4 questions correct)

Check your work and answers!

The chances of guessing the correct answer on a multiple choice test is $1 / 5$. If there are 10 questions, find each of the following:
A. \mathbf{P} (getting 4 questions correct)

$$
=\text { binompdf }\left(10, \frac{1}{5}, 4\right) \approx 8.8 \%_{0}
$$

B. \mathbf{P} (getting at most 4 questions correct)

$$
=\operatorname{binomcdf}\left(10, \frac{1}{5}, 4\right) \approx 96.7 \%
$$

C. $P($ getting at least 4 questions correct)

$$
\begin{aligned}
& 1 \text { - binomedf }\left(10, \frac{1}{5}, 3\right) \\
& 1-.879=.121 \rightarrow 12.1 \%
\end{aligned}
$$

TODAY'S ASSIGNMENT: 14.5 \#6,8,10-12,14 and 14.3 \#21-27, 30

14.3 use probability notation to show what you are solving for, then write the calculator command, and solve with calculator (similar to warm up)

$$
P(\text { at most } 4)=\operatorname{binomedf}\left(10, \frac{1}{5}, 4\right) \approx\left[\begin{array}{c}
967 \\
\text { or } 96.7 \%
\end{array}\right.
$$

14.5 solve with calculator, okay to write only the answer as long as it is labeled properly mean $=34.75$ median $=36$ etc...

HINT FOR 14.5 \#11:

Use 2 lists to enter into calculator

11.

Frequency Table

quiz			The $2^{\text {nd }}$ column
The $1^{\text {st }}$	scores	Frequency	
	16	13	
column could	17	5	indicates how
represent	18	12	many students
quiz scores	19	0	earned each score
	20	2	

Therefore, a score of 16 was earned by 13 students, etc...

